جامعة الفرات - كلية العلوم - قسم الفيزياء سلم تصحيح امتحان مقرر جبر وتحليل متجهي - السنة الأولى الدورة الفصلية الثانية من العام الدراسي ٢٠٢٤/ ٢٠٢٥

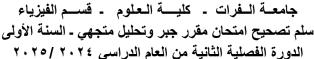
السؤال الأول (٤٠ درجة):

۱۵ درجة	مراتب المصفوفات موضحة في أدلة هذه المصفوفات $(A\cdot B)_{3 imes4}$, $(B\cdot D)_{4 imes3}$, $(A\cdot D)_{3 imes3}$, $(C\cdot B)_{5 imes4}$, $D\cdot (A\cdot B)_{4 imes4}$
	(ii) جداء المصفوفات هو كالآتي
	$A \cdot B = \begin{pmatrix} 0 & -1 & 1 & 1 \\ 3 & 1 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ -1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 + 0 - 1 + 2 & 0 + 1 + 0 + 1 \\ 3 + 0 + 2 + 2 & 6 - 1 + 0 + 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 7 & 6 \end{pmatrix}$
۱۵ درجة	$B \cdot A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ -1 & 0 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 & 1 & 1 \\ 3 & 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 0+6 & -1+2 & 1-4 & 1+2 \\ 0-3 & 0-1 & 0+2 & 0-1 \\ 0+0 & 1+0 & -1+0 & -1+0 \\ 0+3 & -2+1 & 2-2 & 2+1 \end{pmatrix}$
	$= \begin{pmatrix} 6 & 1 & -3 & 3 \\ -3 & -1 & 2 & -1 \\ 0 & 1 & -1 & -1 \\ 3 & -1 & 0 & 3 \end{pmatrix}$
	اننا) لدينا بالفرض أن $A^T=B$ و $B^T=B$ ، وبالتالي $A^T=A$
۱۰ درجات	لزوم الشرط: إذا كانت $A\cdot B$ متناظرة، فإن $(A\cdot B)^T=A\cdot B$ \Rightarrow $B^T\cdot A^T=A\cdot B$ \Rightarrow $B\cdot A=A\cdot B$ كفاية الشرط: إذا كانت $A\cdot B\cdot A=A\cdot B$ ، فإن
	$(A\cdot B)^T=B^T\cdot A^T=B\cdot A=A\cdot B$ $(A\cdot B)^T=B^T\cdot A^T=B\cdot A=A\cdot B$ وهذا يعني أن المصفوفة $A\cdot B$ مصفوفة متناظرة.

جامعة الفرات - كلية العلوم - قسم الفيزياء سلم تصحيح امتحان مقرر جبر وتحليل متجهي - السنة الأولى الدورة الفصلية الثانية من العام الدراسي ٢٠٢٥/ ٢٠٢٥

السؤال الثاني (٣٠ درجة):

	السوال الناني (۲۰ درجه):
	(i) لدينا
	$A = \begin{pmatrix} 4 & 1 \\ -1 & -2 \end{pmatrix} \implies A^T = \begin{pmatrix} 4 & -1 \\ 1 & -2 \end{pmatrix} \implies$
10	$A^{+} = \frac{1}{2} \begin{pmatrix} A + A^{T} \end{pmatrix} = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} 4 & 1 \\ -1 & -2 \end{pmatrix} + \begin{pmatrix} 4 & -1 \\ 1 & -2 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix}$
درجة	$A^{+} = \frac{1}{2} \begin{pmatrix} A - A^{T} \end{pmatrix} = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} 4 & 1 \\ -1 & -2 \end{pmatrix} - \begin{pmatrix} 4 & -1 \\ 1 & -2 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
	فنلاحظ أن المصفوفة A^+ هي مصفوفة متناظرة وأن المصفوفة A^- هي مصفوفة متناظرة عكسياً، وأن
	$A^{+} + A^{-} = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ -1 & -2 \end{pmatrix} = A$
٣	(ii) حساب المحددات
٣ درجات	حساب المحددات $D_1 = \left \left(-2 \right) \right = -2$
ه درجات	$D_1 = (-2) = -2$ $D_2 = \begin{vmatrix} 3 & -1 \\ 3 & 1 \end{vmatrix} = (3)(1) - (-1)(3) = 6$
ه درجات	$D_1 = \left \left(-2 \right) \right = -2$



السوال الثالث (۳۰ در ۱

نشكل أولاً مصفوفة الأمثال لجملة المعادلات، كما يلي

$$A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & -1 & 5 \\ 3 & -1 & -1 \end{pmatrix} \Rightarrow$$

$$\overline{A} = \begin{pmatrix} +\begin{vmatrix} -1 & 5 \\ -1 & -1 \end{vmatrix} & -\begin{vmatrix} -1 & 5 \\ 3 & -1 \end{vmatrix} & +\begin{vmatrix} -1 & -1 \\ 3 & -1 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} & -\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix} & -\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix} & +\begin{vmatrix} 2 & 1 \\ -1 & 5 \end{vmatrix} & -\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix} & +\begin{vmatrix} 2 & 1 \\ -1 & 5 \end{vmatrix} & -\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix} & -\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ -1 & 5 \end{vmatrix} & -\begin{vmatrix} 3 & 4 & 2 & 1 \\ -1 & 5 & -1 & 1 \end{vmatrix}$$

$$Adj(A) = (\overline{A})^T = \begin{pmatrix} 6 & -2 & 8 \\ 14 & -11 & -13 \\ 4 & 5 & -1 \end{pmatrix}$$

كما أن

$$|A| = (2)(6) + (1)(14) + (3)(4) = 12 + 14 + 12 = 38$$

$$A^{-1} = \frac{1}{|A|} A dj (A) = \frac{1}{38} \begin{pmatrix} 6 & -2 & 8 \\ 14 & -11 & -13 \\ 4 & 5 & -1 \end{pmatrix}$$

ولحل جملة المعادلات نكتبها بالشكل المصفوفي
$$A \cdot X = B$$
 ولحل جملة المعادلات نكتبها بالشكل المصفوفي $A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & -1 & 5 \\ 3 & -1 & -1 \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $B = \begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix}$

فيكون حل جملة المعادلات بالشكل

درجات
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = X = A^{-1} \cdot B = \frac{1}{38} \begin{pmatrix} 6 & -2 & 8 \\ 14 & -11 & -13 \\ 4 & 5 & -1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix}$$

$$= \frac{1}{38} \begin{pmatrix} (6)(5) + (-2)(4) + (8)(2) \\ (14)(5) + (-11)(4) + (-13)(2) \\ (4)(5) + (5)(4) + (-1)(2) \end{pmatrix} = \frac{1}{38} \begin{pmatrix} 30 - 8 + 16 \\ 70 - 44 - 26 \\ 20 + 20 - 2 \end{pmatrix} = \frac{1}{38} \begin{pmatrix} 38 \\ 0 \\ 38 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

عميد الكلية. د. نورس الهلامي

مدرس المقرر: أ. د. محمد شعيب العلى